
Covariance systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 9265

(http://iopscience.iop.org/0305-4470/34/43/311)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/43
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 9265–9280 PII: S0305-4470(01)25921-6

Covariance systems

Jan Naudts and Maciej Kuna1

Departement Natuurkunde, Universiteit Antwerpen UIA, Universiteitsplein 1, B-2610
Antwerpen, Belgium

E-mail: naudts@uia.ua.ac.be and maciek@mifgate.mif.pg.gda.pl

Received 19 June 2001
Published 19 October 2001
Online at stacks.iop.org/JPhysA/34/9265

Abstract
We introduce new definitions of states and representations of covariance
systems. The GNS-construction is generalized in this context. It associates a
representation with each state of the covariance system. Next, the states are
extended to the states of an appropriate covariance algebra. Two applications
are given. We describe a non-relativistic quantum particle and give a simple
description of the quantum spacetime model introduced by Doplicher et al
(Doplicher et al 1994 Phys. Lett. B 331 39, Doplicher et al 1995 Commun.
Math. Phys. 172 187).

PACS numbers: 04.62.+v, 11.10.−z, 03.65.Fd, 03.65.Db, 03.70.+k

1. Introduction

Consider an action σ of a group X as automorphisms of a C ∗-algebra A. A ∗-representation
π of A is X-covariant if a unitary representation U of X exists such that

π(σxa) = U(x)π(a)U(x)∗ (1)

holds for all a ∈ A and x ∈ X. A state ω of A is X-covariant if its GNS-representation
is X-covariant. Doplicher et al [6] proved a one-to-one relation between covariant ∗-
representations of A and ∗-representations of the crossed product algebra A×σ X. In quantum
mechanics, projective representations of the relevant symmetry groupX are also important. A
∗-representation π of A, which is only covariant in the sense that (1) holds w.r.t. a projective
representation U ofX, cannot extend to a ∗-representation ofA×σ X because then U would not
be projective. This leads to a situation where the covariance algebraA×σ X has to be replaced
by some other algebra which depends in general on the choice of projective representation.
An elegant formalism to deal with this situation is presented here. It introduces new concepts
of representation and state of a covariance system. The GNS-construction, well known for
states of C ∗-algebras, is generalized and associates a representation with each state of the
1 On leave from: Technical University of Gdansk, Poland.
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covariance system. Next, it is shown that each state of the covariance system extends to a state
of an appropriate covariance algebra.

Our results on covariance systems combine well with a new C ∗-algebraic approach to
quantum mechanics and quantum field theory. It elaborates the usual approach as reviewed in
[12]. The quantum mechanics of a single non-relativistic particle is described by the covariance
system consisting of a group of spatial shifts R3, +, acting on an Abelian algebra of functions of
position. This group can be extended with rotations to form the Euclidean group. If projective
representations are allowed then the particle may have spin. Levy-Leblond [5] has shown,
using the results of Bargmann [3], that the physically relevant representations of the Galilei
group are projective representations, labelled by a free parameter, which is proportional to the
mass of the particle. However, in non-relativistic quantum mechanics, time evolution is not
a symmetry of the Abelian algebra of functions of position. For that reason, these projective
representations of the Galilei group cannot be formulated as projective representations of a
covariance system.

As a second example, we consider the model of quantum spacetime introduced by
Doplicher et al [14, 15]. We restrict ourselves to the description of a single particle using
the proper-time formalism of relativistic quantum mechanics. The configuration space 
 of
its internal degrees of freedom is a four-dimensional manifold in R6. Shifts in Minkowski
space and momentum space act on 
 in a trivial way. An explicit expression is given for
a specific quasi-free state of the resulting covariance system. It involves a C ∗-multiplier
with values in the algebra of continuous complex functions of 
. It has a non-trivial GNS-
representation in which the shift groups have projective representations. Their generators
are position and momentum operators satisfying non-canonical commutation relations. An
alternative construction of a C ∗-algebra with affiliated position operators satisfying the same
non-canonical commutation relations is found in [16].

A third example, the electromagnetic radiation field, will be discussed elsewhere.

2. Covariance systems

2.1. C ∗-multipliers

The following definition introduces a pair of objects (ξ , σ ), where ξ generalizes the concept
of multiplier to maps with values in a C ∗-algebra, and where σ is a twisted representation of
a group as automorphisms of a C ∗-algebra. Operator-valued multipliers have been studied in
[7, 18].

Definition 1. A (left) C ∗-multiplier of a locally compact group X with associated twisted
representation σ is a measurable map ξ of X × X into the unitary elements of the multiplier
algebra M(A) of a C ∗-algebra A satisfying

ξ(x, e) = ξ(e, y) = I x, y ∈ X, (2)

together with a map σ of X into the automorphisms of A such that σ e is the identity
transformation and

σxξ(y, z) = ξ(x, y)ξ(xy, z)ξ(x, yz)∗ x, y, z ∈ X (3)

and

σxσya = ξ(x, y)(σxya)ξ(x, y)
∗ x, y ∈ X a ∈ A. (4)

If the C ∗-algebra A has no unit, it has a fortiori no unitary elements. For this reason we
make use of the multiplier algebra M(A) of A—see e.g. [17, section IV.2]. It is isomorphic to
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A if the latter has a unit. It is in any case isomorphic to the algebra of bounded operators B for
which Bπ(A) ⊂ π(A), where π is a faithful non-degenerate representation of A as bounded
operators of a Hilbert space.

Throughout this paper we assume that ξ is continuous in a neighbourhood of the neutral
element e of X. If ξ (x, y) is a multiple of I for all x, y ∈ X then ξ is also called a cocycle.

A right C ∗-multiplier ζ satisfies

σ−1
y ζ(z, x) = ζ(zx, y)∗ζ(z, xy)ζ(x, y) x, y, z ∈ X (5)

instead of (3) and

σxσya = σxy(ζ(x, y)aζ(x, y)
∗) x, y ∈ X, a ∈ A (6)

instead of (4).
In what follows we need only the multipliers for which the associated representation σ is

an action of the group X as automorphisms of A. In that case, (4) means that ξ (x, y) belongs
to the centre of M(A).

2.2. Covariant states

The following definition can be found in the literature, see e.g. [10].

Definition 2. A covariance system is a triple (A,X, σ) consisting of a C ∗-algebraA, a locally
compact symmetry group X and a strongly continuous action σ of X as automorphisms of A.

Strong continuity of σ means that the map x ∈ X → σxa is continuous in norm for each
a in A. The definition generalizes that of a dynamical system as often found in the literature
(take X = R,+, and t ∈ R → σt is the time evolution of the quantum system). Here we have
rather different applications in mind. Examples are given further on. Note that some authors
[11] use the name C ∗-dynamical system with the same meaning as covariance system.

The following definitions are new. For convenience we introduce

Definition 3. A multiplier ξ of a covariance system (A,X, σ) is a C ∗-multiplier of X, with
values in the centre of M(A), whose associated twisted representation coincides with σ .

The reason for restricting the values of ξ to the centre of M(A) is that the representation
σ of X is not twisted. With a left multiplier ξ of (A,X, σ) corresponds a right multiplier ζ
defined by

ζ(x, y) = σ−1
xy ξ(x, y). (7)

Throughout this paper the symbols ξ and ζ are related in this way.
The notion of a state of a C ∗-algebra is well known. It is generalized here as follows.

Definition 4. A state of the covariance system (A,X, σ) is a measurable map ω of X × X

into continuous linear complex-valued functions of A having the following properties.

• (positivity) For all n > 0 and for all possible choices of λ1, . . . , λn in C, of x1, . . . , xn in
X and of a1, . . . an in A is

n∑
j,k=1

λj λ̄kωxj ,xk (a
∗
k aj ) � 0. (8)

• (normalization) ωe,e is a state of A.
• (covariance) There exists a right multiplier ζ of (A,X, σ) satisfying

ωx,y(σza) = ωxz,yz(ζ(y, z)aζ(x, z)
∗) (9)

for all x, y, z ∈ X and a ∈ A.
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• (continuity) For any a ∈ A the map x, y → ωx,y(a) is continuous in a neighbourhood of
the neutral element of X ×X.

The state ω is faithful if ωe,e is faithful.

An alternative notation is

F(a, x, y) = ωx,y(a). (10)

In the case that the C ∗-algebra A is trivial (i.e. equal to C), then the first argument may
be omitted. The resulting function F (x, y) is the generalization of Wigner’s function, or its
Fourier transform, the characteristic function of Moyal [2].

Any X-covariant state ω of the C ∗-algebra A defines a state (again denoted by ω) of the
covariance system (A,X, σ) by

ωx,y(a) = (π(a)U(x)∗ψ,U(y)∗ψ) x, y ∈ X a ∈ A (11)

where (H, π,ψ) is the GNS-representation of A induced by ω and U is the covariant
representation of X. The converse is also true. If ω is a state of (A,X, σ) then ωe,e is
an X-covariant state of A provided we weaken the definition of X-covariance to allow for
projective representations. This will be shown in section 2.5.

The following results are needed for technical reasons. The next lemma generalizes the
lemma of Schwarz.

Lemma 1. Let ω be a state of (A,X, σ). Then∣∣∣∣∣∣
n∑

j,k=1

λj λ̄kωxj ,xk (a
∗
kbj − b∗

kaj )

∣∣∣∣∣∣
2

� 4
n∑

j,k=1

λj λ̄kωxj ,xk (a
∗
k aj )

n∑
j,k=1

λj λ̄kωxj ,xk (b
∗
kbj ) (12)

for all choices of λ1, . . . , λn in C, of x1, . . . , xn in X and of a1, . . . an and b1, . . . , bn in A.

The proof is straightforward. The lemma is now used to prove uniform continuity of ωx,y.

Proposition 1. Let ω be a state of (A,X, σ). One has

n∑
j,k=1

λj λ̄kωxj ,xk (a
∗
kaj ) �


 n∑

j=1

|λj | ‖aj‖



2

(13)

for all choices of λ1, . . . , λn in C, of x1, . . . , xn in X and of a1, . . . an in A.

Proof. The statement is clearly true for n = 1. Assume it to hold up to n − 1. One calculates,
using the lemma with bk = iδk,nan,

n∑
j,k=1

λj λ̄kωxj ,xk (a
∗
kaj ) �


n−1∑

j=1

|λj | ‖aj‖



2

+
n−1∑
j=1

λj λ̄nωxj ,xn (a
∗
naj )

+
n−1∑
j=1

λnλ̄jωxn,xj (a
∗
j an) + |λn|2 ‖an‖2

�


 n∑

j=1

|λj | ‖aj‖



2

. (14)

Hence the proof follows by induction. �
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2.3. Representations of a covariance system

The following two definitions are obvious.

Definition 5. A representation of the covariance system (A,X, σ) is a triple (H, π,U)

which consists of a ∗-representation π of A in a Hilbert space H and a measurable map
x ∈ X → U(x) into the unitary operators of H, with the properties that (1) holds, and that
each normalized element ψ of H defines a state ω of the covariance system by (11). An
element ψ ∈ H is cyclic for the representation if the subspace spanned by

{π(a)U(x)∗ψ : a ∈ A, x ∈ X} (15)

is dense in H.

Definition 6. Two representations (H, π,U) and (H′, π ′, U ′) of (A,X, σ) are equivalent if
there exists an isomorphism V of H onto H′ intertwining π and π ′, respectively U and U ′.

2.4. Projective representations of X

Proposition 2. Consider a multiplier ξ of a covariance system (A,X, σ). Let π be a
∗-representation of A in a Hilbert space H and let x → U(x) be a projective representation
of X in H in the sense that (1) U(e) = I; (2) U(x) is unitary for all x ∈ X; (3) the composition
law is given by

U(x)U(y) = π(ξ(x, y))U(xy) x, y ∈ X. (16)

Assume further that x → U(x) is strongly continuous in a neighbourhood of the neutral
element of X and that the covariance condition (1) is satisfied. Then (H, π,U) is a
representation of the covariance system (A,X, σ).

Proof. We have to show that each normalized element ψ of H defines a state ω of the
covariance system by (11). Positivity, normalization and continuity are straightforward. The
covariance condition remains to be shown. Note that

U(xy)∗U(x)U(y) = π(ζ(x, y)) (17)

with ζ related to ξ by (7). Using this result covariance follows from

ωx,y(σza) = (π(σza)U(x)∗ψ,U(y)∗ψ)
= (π(a)U(z)∗U(x)∗ψ,U(z)∗U(y)∗ψ)
= (π(a)(U(xz)π(ζ(x, z)))∗ψ, (U(yz)π(ζ(y, z)))∗ψ)
= ωxz,yz(ζ(y, z)aζ(x, z)

∗). (18)

�

2.5. GNS-construction

The GNS-construction for the states of a C ∗-algebra can be generalized as follows.

Theorem 1. Letω be a state of the covariance system (A,X, σ). There exists a representation
(H, π,U) of (A,X, σ) and a multiplier ξ of (A,X, σ) such that

• U is a projective representation of X satisying (16),
• (9) holds with ζ related to ξ by (7),
• There exists a cyclic vector ψ of H such that (11) holds.
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The quadruple (H, π,U,ψ) is unique up to equivalence of representations, i.e. if (H′, π ′, U ′)
is a representation and ψ ′ is a cyclic vector of H′ satisfying (11) with ψ replaced by ψ ′ and π
and U replaced by π ′ and U ′, then there exists an isomorphism V of H onto H′ intertwining
π and π ′, respectively U and U ′, and mapping ψ onto ψ ′.

Proof. Let Cc(X,A) denote the linear space of the continuous functions with compact support
in X and with the values in A. A sesquilinear form is defined by

(f, g) =
∫
X

dx"(x)−1
∫
X

dy"(y)−1 ωx,y(g(y)
∗f (x)) (19)

for all f, g ∈ Cc(X,A) (" is the modular function of X). From the positivity of ω it follows
that (·, ·) is a positive form. Let us assume for simplicity of notation that (·, ·) is not degenerate
(it is easy to see that further definitions do not depend on the choice of the representative of
the equivalent class given by the kernel of (·, ·)). Then it is an inner product making Cc(X,A)
into a pre-Hilbert space. Let H denote its completion.

Define π by

π(a)f (x) = af (x) a ∈ A f ∈ Cc(X,A) x ∈ X. (20)

By linearity π(a) extends to a linear operator with the domain Cc(X,A). It is obvious that
π(a)π(b) = π(ab), π is linear and π(b)∗ = π(b∗). If a � 0 then

(π(a)f, f ) =
∫
X

dx"(x)−1
∫
X

dy"(y)−1 ωx,y(f (y)
∗af (x)) � 0. (21)

This implies that π(a) is bounded for all a ∈ A (indeed, (20) extends to the multiplier algebra
M(A) and π(I) = I so that ‖a‖2 − a∗a � 0 implies that ‖a‖2 ‖f ‖2 − ‖π(a)f ‖2 � 0). Hence
π is a ∗-representation of A in H.

Next define a linear operator U by

U(x)f (y) = σx [f (yx)ζ(y, x)] x, y ∈ X f ∈ Cc(X,A). (22)

Note that one has U (e) = I. A straightforward calculation gives

U(x)∗f (y) = (σ−1
x f (yx−1))ζ(yx−1, x)∗. (23)

This expression can be used to verify that U (x) is unitary.
Let ξ be defined by (7). Then a short calculation using (5) gives

U(x)U(y)f (z) = σx
[
σy [f (zxy)ζ(zx, y)] ζ(z, x)

]
= σxy [f (zxy)ζ(x, y)ζ(z, xy)]
= π(ξ(x, y))U(xy)f (z) (24)

which is (16).
Let (uα)α be an approximate unit of A. For each neighbourhood v of e in X, let δv be a

positive function vanishing outside v and satisfying∫
X

dx δv(x) = 1. (25)

Then the functions (δvuα)v,α form a Cauchy net in H converging to some element ψ .
From (23), it now follows that∫

X

dx "(x)−1π(f (x))U(x)∗ψ = f (26)

for all f ∈ Cc(X,A). This proves that ψ is cyclic. The latter also implies that

(f, g) =
∫
X

dx "(x)−1
∫
X

dy "(y)−1(π(g(y)∗f (x))U(x)∗ψ,U(y)∗ψ). (27)
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Comparison with (19) shows that (11) holds. From (22) and (23) it follows immediately that
(1) holds. Hence, proposition 2 asserts that (H, π,U) is a representation of the covariance
system.

Finally, we prove uniqueness up to equivalence of representations. Define V with domain
Cc(X,A) by

Vf =
∫
X

dx "(x)−1π ′(f (x))U ′(x)∗ψ ′. (28)

It is straightforward to verify that V extends to an isometry of H into H′. Becauseψ ′ is cyclic,
V is an isomorphism.

That V intertwines π and π ′ is obvious. For U and U ′ one has

U ′(x)Vf = U ′(x)
∫
X

dy "(y)−1π ′(f (y))U ′(y)∗ψ ′

= U ′(x)
∫
X

dy "(y)−1π ′(f (yx))U ′(yx)∗ψ ′

= U ′(x)
∫
X

dy "(y)−1π ′(f (yx)ζ(y, x))U ′(x)∗U ′(y)∗ψ ′

=
∫
X

dy "(y)−1π ′ (σx [f (yx)ζ(y, x)]) U ′(y)∗ψ ′

= VU(x)f. (29)

Finally, it is obvious that Vψ = ψ ′. �

2.6. Crossed product algebras

A reader not interested in crossed product algebras may skip this section. It is not needed for
the sequel of this paper but is added to clarify the relation between the present and previous
work on crossed product algebras. Details found in [18] are not repeated here.

Let ω be a given state of a covariance system (A,X, σ). Let ζ be the right multiplier
associated with ω. Recall that σ is the representation associated with ζ . Let ξ be the left
multiplier derived from ζ by (7). The representation σ together with ξ determines a crossed
product algebra A ×ξ X. It is constructed as follows. Let L1(X,A) denote the linear space
of integrable functions of X with values in A. A product law for the elements of L1(X,A) is
given by

(f × g)(x) =
∫
X

dy f (y)ξ(y, y−1x)σyg(y
−1x). (30)

An involution is given by

f &(x) = "(x)−1ξ(x, x−1)∗σxf (x−1)∗. (31)

In this way L1(X,A) becomes an involutive algebra. By closure in an appropriate norm it
becomes the C ∗-algebra A ×ξ X.

A linear functional ω̄ of L1(X,A) is defined by

ω̄(f ) =
∫
X

dx "(x)−1ωx,e(ξ(x
−1, x)f (x−1)). (32)

Proposition 3. ω̄ extends to a state of A ×ξ X.
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Proof. Positivity is verified as follows:

ω̄(f & × f ) =
∫
X

dx "(x)−1ωx,e(ξ(x
−1, x)(f & × f )(x−1))

=
∫
X

dx "(x)−1
∫
X

dy "(y)−1

×ωx,e(ξ(x
−1, x)ξ(y, y−1)∗(σyf (y−1))∗ξ(y, y−1x−1)σyf (y

−1x−1))

=
∫
X

dx "(x)−1
∫
X

dy "(y)−1

×ωx,e(σy[ξ(y−1x−1, x)f (y−1))∗f (y−1x−1)])

=
∫
X

dx "(x)−1
∫
X

dy "(y)−1

×ωxy,y (ξ(y
−1x−1, x)ζ(x, y)∗f (y−1))∗f (y−1x−1))

=
∫
X

dx "(x)−1
∫
X

dy "(y)−1

×ωxy,y (ξ(y
−1, y)ξ(y−1x−1, xy)∗f (y−1))∗f (y−1x−1))

=
∫
X

dx "(x)−1
∫
X

dy "(y)−1

×ωx,y(ξ(y
−1, y)ξ(x−1, x)∗f (y−1))∗f (x−1)) � 0. (33)

For each neighbourhood v of the neutral element ofX, let δv be a positive normalized function
with support in v. Then (δvuα)v,α is an approximate unit of L1(X,A). One has

ω̄(δvuα) =
∫
X

dx "(x)−1δv(x
−1)ωx,e(ξ(x

−1, x)uα). (34)

The latter tends to 1 because of the continuity of x → ωx,e and x → ξ(x−1, x) in the vicinity
of e.

One concludes that ω̄ is a positive normalized linear functional of the involutive algebra
L1(X,A). By continuity it extends to a state of A ×ξ X. �

Now let (H, π,U,ψ) be the GNS-representation of (A,X, σ) induced by ω. Then one
has

ω̄(f ) =
∫
X

dx "(x)−1ωx,e(ξ(x
−1, x)f (x−1))

=
∫
X

dx "(x)−1(π(ξ(x−1, x))π(f (x−1))U(x)∗ψ,ψ)

=
∫
X

dx (π(f (x))U(x)ψ,ψ). (35)

A representation π̄ of A ×ξ X is now defined by the extension of

π̄(f ) =
∫
X

dx π(f (x))U(x) f ∈ L1(X,A). (36)

It is obvious that this representation is equivalent to the GNS-representation of ω̄. Conversely,
if ω̄ is any state of A ×ξ X then a state ω of the covariance system (A,X, σ) can be defined
by (9) using the GNS-representation of ω̄ (see the remarks after theorem 2 of [18]). This
representation is then equivalent to the GNS-representation of ω.
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3. Non-relativistic particle

This section is devoted to the projective representations occurring in the quantum mechanics
of a non-relativistic particle and serves as an example of our approach. It relies partly on older
work by Levy-Leblond [5], work which has been extended by Hagen [8, 9].

The algebra A is the algebra C0(R
n) of classical functions of position. The appropriate

group of symmetry transformations is the Euclidean group. However, it is easier to start with
the subgroup Rn, + of shifts. This already yields the standard representation of quantum
mechanics. Later on, rotations are added to discuss the spin of the particle. Finally,
transformations to a moving frame are discussed.

3.1. Standard representation

First assume X = R
n,+. The shifts act as automorphisms of A by

(σqf )(q
′) = f (q ′ − q) f ∈ A q, q ′ ∈ X. (37)

A ∗-representation π of A as bounded operators of H = L2(R
n) is defined by

π(f )ψ(q) = f (q)ψ(q) f ∈ A q ∈ R
n. (38)

A unitary representation U of X is defined by

U(q)ψ(q ′) = ψ(q ′ − q) q, q ′ ∈ R
n. (39)

One immediately verifies that (H, π,U) is a representation of (A,X, σ). In particular, any
normalized elementψ of H defines a state of (A,X, σ). The multiplier ξ associated with such
a state is identically equal to 1.

Using Stone’s theorem, the shift operators can be written as

U(q) = exp


−(i/h̄)

n∑
j=1

qjPj


 (40)

with Pj the momentum operators and h̄ equal to Planck’s constant divided by 2π . A short
calculation gives the canonical commutation relations[

Qj, Pk

]
− = δj,k i h̄ (41)

with QJ the multiplication operators

Qjψ(q) = qjψ(q) (42)

defined on a suitable domain.

3.2. Rotation symmetry

Now we extend the symmetry group X to the Euclidean group by adding rotations. We first
discuss a particle without spin.

The group law is

(q ′,,′)(q,,) = (q ′ + ,′q,,′,) q, q ′ ∈ R
n ,,,′ ∈ SO(n). (43)

The representation σ is given by

(σq,,f )(q
′) = f (,−1(q ′ − q)) f ∈ A q, q ′ ∈ R

n , ∈ SO(n). (44)

The ∗-representation (H, π) is the standard representation of the previous section. The unitary
representation U of X is given by

(U(q,,)ψ)(q ′) = ψ(,−1(q ′ − q)) (45)



9274 J Naudts and M Kuna

with ψ ∈ L2(R
n) and q, q ′ ∈ R

n,, ∈ SO(n). Then (H, π,U) is a representation of
(A,X, σ). In particular, any normalized element ψ of H defines a state of (A,X, σ). The
multiplier ξ associated with such a state is identically equal to 1.

3.3. Spin

Fix n = 3. The covariance system (A,X, σ) of the previous section also has states whose
associated multiplier ξ is non-trivial. The representation induced by these states is the so-
called spinor representation. The reason for their existence is that the group SO (3) is doubly
connected with covering group SU (2).

Given q ∈ R
3, construct the matrix

M(q) =
3∑

j=1

qjσj (46)

with σ1, σ2, σ3 the three Pauli matrices. The matrix M (q) transforms under an element u
of SU (2) into the matrix M(q ′) = uM(q)u∗. It is easy to show that the transformation
q → q ′ is a rotation, i.e. there exists /(u) ∈ SO(3) for which q ′ = /(u)q . Note that / is a
homomorphism of SU (2) onto SO (3). Let , → v(,) be an inverse of u → /(u) in the sense
that /(v(,)) = , for all , and v(/(u)) = u for all u in the neighbourhood of the identity
matrix. Note that the map v cannot be continuous. A cocycle ξ of SO (3) is defined by

v(,)v(,′) = ξ(,,,′)v(,,′). (47)

From

/(v(,)v(,′)) = ,,′ (48)

and

/(ξ(,,,′)v(,,′)) = /(ξ(,,,′)),,′ (49)

it follows that /(ξ(,,,′)) = I. This implies that ξ(,,,′) = ±1. Hence it is clear that ξ is
a multiplier of (A,X, σ).

Consider the Hilbert space H = L2(R
n) ⊕ L2(R

n). An element of this space is denoted

by
(
ψ1

ψ2

)
. It is normalized if ‖ψ1‖2 + ‖ψ2‖2 = 1. A ∗-representation π of A is defined by

π(f )

(
ψ1

ψ2

)
(q) = f (q)

(
ψ1

ψ2

)
(q). (50)

A projective representation U of X is defined by

U(q,,)

(
ψ1

ψ2

)
(q ′) = v(,)

(
ψ1

ψ2

)
(,−1(q ′ − q)). (51)

Indeed, one verifies that

U(q ′,,′)U(q,,)

(
ψ1

ψ2

)
(q ′′) = v(,′)v(,)

(
ψ1

ψ2

)
(,−1(,′−1

(q ′′ − q ′) − q))

= ξ(,′,,)v(,′,)
(
ψ1

ψ2

)
((,′,)−1(q ′′ − q ′ − ,′q)

= ξ(,′,,)U(q ′ + ,′q,,′,)
(
ψ1

ψ2

)
(q ′′). (52)

Because (1) is satisfied it follows from property 2 that (H, π,U) is a representation of
(A,X, σ).
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Each normalized element
(
ψ1

ψ2

)
of H determines a state ω of (A,X, σ). In what follows

we use the F-notation (10). A tedious calculation yields

F(f ; q,,; q ′,,′) =
∫

R
3

dq ′′ f (q ′′)
(
ψ1

ψ2

)
(,′q ′′ + q ′) · v(,′)v(,)∗

(
ψ1

ψ2

)
(,q ′′ + q).

(53)

In particular, there follows

F(f ; q,,; q,,) =
∫

R
3

dq ′′ f (q ′′)(|ψ1|2 + |ψ2|2)(,q ′′ + q). (54)

These diagonal elements of ω do not reveal whether the state has spin or not. Only the
correlation effects visible in the off-diagonal elements can reveal the presence of mechanical
spin. Consider, for example, a rotation by π around the z-axis (denoted by ,). Then one has
v(,) = σz so that

F(f ; q,,; 0, I) =
∫

R
3

dq ′′ f (q ′′)(ψ̄1(q
′′)ψ1(,q

′′ + q)− ψ̄2(q
′′)ψ2(,q

′′ + q)). (55)

The minus sign is a consequence of spin and has the effect that the particle observed in a frame
rotated by 180◦ does not look as expected.

3.4. Mass

Consider now the full Galilei group G. Its composition law is

(q ′,,′, t ′, v′)(q,,, t, v) = (q ′ + ,′q + tv′,,′,, t ′ + t, v′ + ,′v). (56)

As before q ∈ R
n,+ is a shift operation and , ∈ SO(3) is a rotation. The remaining

parameters describe a transformation to a moving frame with velocity v ∈ R
n and time t ∈ R.

For simplicity we consider a particle without spin. Then the relevant ∗-representation π

of A is the standard representation of section 3.1. The Galilei group has non-trivial cocycles
ξκ parametrized by some parameter κ �= 0 [3, 5]. A possible definition of ξκ is

ξκ(q
′,,′, t ′, v′; q,,, t, v) = exp

(
−iκ

[
1

2
t ′|v|2 + t ′v′ · ,′v − v′ ·,′(q − tv)

])
. (57)

It appears in the following projective representation of G

U(q,,, t, v) = U(q − tv,,) exp(iκv · ,Q) exp(ih̄−1tH ) (58)

where H is the Hamiltonian of the free particle

H = 1

2m
P 2. (59)

The mass m is related to κ by m = h̄κ , P and Q are the position and momentum operators
(see section 3.1) and U (q, ,) is the unitary representation defined by (45). Indeed, a tedious
calculation shows that U, defined in this way, satisfies (16) with ξ = ξκ .

The projective representation (58) does not determine a projective representation of a
covariance system for the simple reason that time evolution is not a symmetry of the algebraA
of functions of position. For this purpose A should be extended to an algebra of functions of
position and time. The natural context for doing so is relativistic quantum mechanics. In the
present non-relativistic case, the representation (58) determines in an obvious way a projective
representation of the enlarged covariance system.
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4. Non-canonical commutation relations

In this section, we construct a variant of the model introduced by Doplicher et al [14, 15].
It describes a single-quantum particle in spacetime using the off-mass-shell formalism. A
preliminary version of our work on this model has been reported in [18].

We do not follow the usual notational conventions of relativity theory. In particular, the
inner product x · y is that of R4 and not that of Minkowski space. The reason for doing so is
that we use simultaneously two different metric tensors, denoted respectively by g and γ .

4.1. Model

Let us make the (quite unusual) ansatz that a relativistic particle is characterized by two
elements e and m of R3 satisfying |e|2 = |m|2 and e ·m = ±1. Let 
 ⊂ R

6 denote the space
of these pairs (e, m). It is, by assumption, the classical configuration space of the particle. See
[14, 15] for a motivation of this particular choice. Note that 
 is a locally compact manifold
in R6. The algebra A of the classical observables equals the C ∗-algebra C0(
) of continuous
complex functions of 
 vanishing at infinity. Consider as a symmetry groupX of 
 the group
R4 × R4, + acting in a trivial way, i.e. σk,qf = f for all k, q ∈ R

4 and f ∈ C0(
). In this
way one obtains a covariance system (A,X, σ).

The metric tensor of Minkowski space is denoted by g. It is the diagonal matrix [1, −1,
−1, −1]. The geometry of spacetime is described by a metric tensor γ (e, m) which is an
invertible 4 × 4 matrix with real coefficients depending continuously on (e, m). A possible
choice is γ = g.

For each (e,m) ∈ 
, form an antisymmetric matrix ε(e,m) by

ε(e,m) =




0 e1 e2 e3

−e1 0 m3 −m2

−e2 −m3 0 m1

−e3 m2 −m1 0


 . (60)

The matrix ε−1γ will appear often. It transforms the positions q into the wave vectors k. Let
us introduce the notation

η(e,m) = (e · m)ε−1(e,m)γ (e,m). (61)

The factor (e ·m), which equals ±1, has been included for physical reasons (one expects that
the wave vector k will transform into gk under time reversal, while q transforms into −gq).

Later on, the group X will be extended to the Lorentz group. The action of the
Lorentz group on the functions of 
 will be non-trivial. Since integration over 
 should
be compatible with this action, we introduce it here. A representation σ of the Lorentz group
as automorphisms of C0(
) is defined by

σ,f (e,m) = f (e′,m′) with ε(e′,m′) = ,̃ε(e,m),. (62)

Here, ,̃ denotes the transpose of the matrix ,. An invariant measure ρ0 of 
 is given by∫



dρ0(e,m) f (e,m) =
∫

R
6

de dmδ((e · m)2 − 1)δ(|e|2 − |m|2)f (e,m). (63)

4.2. Quasi-free states

Let T (e, m) be a positive matrix, continuously depending on (e, m), large enough so that
T (e,m) + (i/2)(e · m)ε(e,m) is a positive definite matrix (an appropriate ‘covariant’ choice
of T will be discussed later on). Let w be a strictly positive function with integral 1 and let

dρ(e,m) = w(e,m) dρ0(e,m). (64)
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The probability measure ρ together with the choice of T determines a state ω of (A,X, σ) by

ωk,q;k′,q ′(f ) =
∫



dρ(e,m) f (e,m) exp

(
1

2
i(e · m)(k + ηq) · ε(k′ + ηq ′)

)

× exp

(
−1

2
(k − k′ + η(q − q ′)) · T (k − k′ + η(q − q ′))

)
(65)

for all k, k′, q, q ′ ∈ R
4. The multiplier ξ associated with ω is given by

ξ(k, q; k′, q ′) = exp

(
1

2
i(e ·m)(k + ηq) · ε(k′ + ηq ′)

)
. (66)

Note that in (65) k and k ′ have the interpretation of a shift in wave vector; q, q ′ an interpretation
of a shift in position of the particle.

In the C ∗-algebraic approach to quantum mechanics the notion of quasi-free states is
introduced—see e.g. [13]. We have not yet studied its generalization to the present context
of covariance systems. However, it is obvious that (65) is a good example of what can be a
quasi-free state.

4.3. Position and momentum operators

Let (H, π,U,ψ) be the GNS-representation of (A,X, σ) induced by ω. From the continuity
of (65) in k, k′, q, q ′ it follows, using Stone’s theorem, that U has self-adjoint generators.
Because ξ(k, q; k′, q ′) commutes with U(k′′, q ′′) one can write

U(k, q) = exp(−ik · γQ + iγ q · K) . (67)

In the context of the GNS-construction, the operators Qµ and Kµ can be written formally as a
sum of a multiplication operator and a differential operator acting on functions ψ(k, q) with a
value in C0(
). From the definition (see the proof of the GNS-construction) it follows that

U(k, q)ψ(k′, q ′) = ψ(k + k′, q + q ′)ξ(k′, q ′; k, q). (68)

Comparing the expansions of (67) and (68) one obtains

Qµ = i
∑
ν

γ−1
µ,ν

∂

∂kν
+

1

2
qµ +

1

2
(η−1k)µ (69)

and

Kµ = −i
∑
ν

γ−1
ν,µ

∂

∂qν
+

1

2
kµ +

1

2
(ηq)µ. (70)

Using these explicit expressions it is easy to calculate the following commutation relations:

[Qµ,Qν ] = −i(e ·m)(γ−1εγ̃−1)µ,ν

[Kµ,Kν ] = i(e ·m)ε−1
µ,ν (71)

[Kµ,Qν ] = −iγ−1
ν,µ.

Note that the r.h.s. of these expressions is always an operator commuting with all the operators
Qµ and Kµ. Commutation relations of this kind have been proposed by Doplicher et al [14,
15] as a simplified model for quantum spacetime.

It is now very easy to calculate physically relevant quantities in the state ω, for example,
one finds (Qµψ,ψ) = 0 and

(QνQµψ,ψ) =
∫



dρ(e,m)

[
γ−1

(
T (e,m) +

1

2
i(e ·m)ε(e,m)

)
γ−1

]
µ,ν

(72)

i.e. the state ω describes a particle with expected position at the origin of spacetime and with
variance in position determined by T ± (i/2)ε.
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4.4. Lorentz transformations

In what follows we assume that

T (e′,m′) = ,̃T (e,m), (73)

with (e′,m′) related to (e, m) by (62), i.e. T transforms like ε under the Lorentz transformations.
Such an assumption is possible. Indeed, let C be any positive matrix. Fix a special point
(e0,m0) in 
, e.g. the point with e = m = (1, 0, 0). Use it to define the matrix ε0 by
ε0 = ε(e0,m0). Now assume that ,̃ε0, = ε0 implies that ,̃C, = C. Then T (e, m) is
defined by

T (e,m) = ,̃C, whenever ε(e,m) = ,̃ε0,. (74)

Obviously, T transforms in the same way as ε. From

k · T (e,m)k′ = ,k · C,k′ (75)

it follows that T (e,m) is positive. In fact, we need T (e,m) + (i/2)(e · m)ε(e,m) � 0. This
is satisfied if C ± (i/2)ε0 � 0; e.g. C = 1

2 I is a good choice.
If (73) is satisfied then a unitary representation R of the proper Lorentz group is defined

by

R(,)ψ(k, q)(e,m) =
√
w(e′,m′)
w(e,m)

ψ(,−1k,,−1q)(e′,m′) (76)

with (e′,m′) as in (62). One calculates that

R(,)∗ψ(k, q)(e′,m′) =
√

w(e,m)

w(e′,m′)
ψ(,k,,q)(e,m). (77)

It is now straightforward to verify that R(,) is unitary. One verifies that

π(σ,f ) = R(,)π(f )R(,)∗. (78)

With the assumption that

γ (e′,m′) = ,̃γ (e,m), (79)

i.e. γ also transforms in the same way as ε, one obtains

U(,k,,q) = R(,)U(k, q)R(,)∗. (80)

Extension of the symmetry groupX to include the proper Lorentz group is straightforward;
e.g. let

ωk,q,,;k′ ,q ′,,′(f ) = (π(f )U(k, q)∗R(,)∗ψ,U(k′, q ′)∗R(,′)∗ψ). (81)

5. Discussion

We have introduced the notion of a (mathematical) state of a covariance system (A,X, σ). It
generalizes the notion of a covariant state of the C ∗-algebra A by allowing that in the Hilbert
space representation the action σ of the groupX is implemented as a projective representation
and by allowing that the cocycle associated with this representation is operator-valued (i.e.
it is a C ∗-multiplier). For these generalized covariant states we prove a GNS-theorem. It
can be used as an alternative for working with crossed products of A and X. In fact, the
proof captures all the essential elements of the proof of the existence of the crossed product
algebra. The shift in emphasis from crossed product algebra to states of a covariance system
has many advantages. In particular, the problem that the crossed product algebra depends on
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the C ∗-multiplier is circumvented; e.g. spin of a quantum particle is a property of the states of
a covariance system involving different C ∗-multipliers. In the more traditional approach, the
particles with or without spin are described by the states on different C ∗-algebras.

A limitation of the present paper is that the representations involving anti-unitary operators
are not included. Such representations are essential for physical applications. Wigner [1]
showed that all the symmetry elements appearing in quantum mechanics must be implemented
either by unitary or anti-unitary operators of the Hilbert space of wavefunctions. These anti-
unitary operators appear only in the case of discrete symmetries. Indeed, one can always
assume that the neutral element of the symmetry group is implemented as the identity operator.
Then any element which is continuously connected with the neutral element must also be
implemented as a unitary operator. We think that the omission of anti-unitary representations
can be handled easily in most situations. It is clear from the examples that the physically
relevant representation of the covariance system is usually already fixed by considering a
subgroup of symmetries (e.g. the standard representation of quantum mechanics is already
obtained by considering the subgroup of spatial shifts only). In such cases, the anti-unitary
implementation of discrete symmetry elements can be added ‘by hand’, i.e. without relying
on the GNS-theorem. A good example [4] is time-reversal symmetry, denoted by θ . When
added to the Galilei group it anti-commutes with velocity v and time t and commutes with
position q and rotation ,. It is implemented as the anti-unitary operator which maps each
wavefunction onto its complex conjugate. In the relativistic example, θ = −g is an element
of the full Poincaré group. Its implementation is

R(θ)ψ(k, q)(e,m) =
√
w(−e,m)

w(e,m)
ψ(gk, θ q̄)(−e,m). (82)

The section on non-relativistic quantum mechanics picks up old ideas about the role of
covariance systems in quantum mechanics and illustrates our approach to quantum mechanics
and quantum field theory. It does not involve a quantization step referring to classical
mechanics. It starts from a C ∗-algebra A of ‘classical’ functions which are accessible for
experimental measurement. A group X of symmetries, acting as automorphisms of A, is
considered. Together they form a covariance system; e.g. if A is a C ∗-algebra of functions
of position in R

3 and X is the Euclidean group, then the standard representation of quantum
mechanics is a representation of the covariance system (A,X, σ).

The section about the model of quantum spacetime has been added to give an example of
projective representations involving operator-valued cocycles, i.e. non-trivial C ∗-multipliers.
The immediate effects of these are non-canonical commutation relations. Another aspect,
well illustrated by this example, is how the GNS-construction can be used to build physically
interesting representations starting from an explicit expression for a state of the covariance
system. Also remarkable is the fact that the C ∗-algebra A of ‘classical’ functions does not
contain functions of position or momenta, but only functions of the internal degrees of freedom
e and m. Hence, the properties of quantum spacetime appear only in the representation of the
covariance system, the representation which depends on the state of the system. In this way
we hope that the representations of many-particle systems may produce a non-flat spacetime
structure. It is quite clear that our treatment of this model is far from complete. A full study
is beyond the scope of the present paper and will be reported elsewhere [19].
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